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Abstract

Background: The apolipoprotein E4 (apoE4) genotype is a major risk factor for developing late-onset Alzheimer's
disease (AD). Inheritance of apoE4 is also associated with impairments in olfactory function in early stages of AD.

In this project we examined the effects of the three common isoforms of human apoE (apoE2, apoE3, and apok4)
on neuronal differentiation and neurite outgrowth in explant cultures of mouse olfactory epithelium (OF).

Results: The OF cultures derived from apoE-deficient/knockout (KO) mice have significantly fewer neurons with
shorter neurite outgrowth than cultures from wild-type (WT) mice. Treatment of the apoE KO culture with either
purified human apoE2 or with human apoE3 significantly increased neurite outgrowth. In contrast, treatment with
apoE4 did not have an effect on neurite outgrowth. The differential effects of human apoE isoforms on neurite
outgrowth were abolished by blocking the low-density lipoprotein receptor-related protein (LRP) with lactoferrin

and receptor-associated protein (RAP).

Conclusion: ApoE2 and apoE3 stimulate neurite outgrowth in OE cultures by interacting with the lipoprotein
receptor, LRP. ApoE4, the isoform associated with AD, failed to promote neurite outgrowth, suggesting a potential
mechanism whereby apoE4 may lead to olfactory dysfunction in AD patients.
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Background

Apolipoprotein E (apoE) is a protein component of
several lipoproteins [1]. ApoE functions in the redistri-
bution of lipids by binding to the low-density lipoprotein
(LDL) receptor and the LDL receptor-related protein
(LRP) family members [2]. Receptor-lipoprotein binding
initiates internalization and degradation of lipoproteins,
making lipids available for use in the regulation of intra-
cellular lipid metabolism. ApoE ranges in length from
279 to 310 residues, with a high degree of sequence
similarities among species [3]. There are three major
isoforms of apoE in humans differing by amino acids at
positions 112 and 158 [4]. The most common isoform,
apoE3, contains cysteine and arginine at positions 112
and 158, respectively [3]. Both positions have cysteine in
apoE2 and arginine in apoE4. Mice have one form of
apoE, which is similar to human apoE3 in its structural
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and functional properties, including receptor binding
and lipoprotein preferences [3].

Numerous genetic studies have revealed that inheri-
tance of apoE4 allele increases the risk and rate of pro-
gression of late-onset Alzheimer disease [5-9]. About
65-80% of AD patients have at least one apoE4 allele
[9,10]. In addition, apoE4 inheritance decreases the age
of onset of AD [8,9]. Neurofibrillary tangles and amyloid
plaques, the two hallmarks of AD, are increased in brain
samples from apoE4 carriers as compared to non-apoE4
carriers [11,12]. Both plaques and tangles appear earlier
in apoE4 patients as compared to non-apoE4 patients. In
addition, AD patients with apoE4 genotype showed
decreased dendritic growth, reduced synaptic numbers,
and widespread degeneration of neurons in areas of the
brain related to learning and memory, as compared to
non-apoE4 patients [13]. Numerous hypotheses have
been proposed to explain apoE4 effects on AD; however,
the mechanism whereby apoE4 leads to AD is still
unclear.
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Inheritance of the apoE4 genotype is also associated
with olfactory dysfunction including deficits in odor flu-
ency, odor identification, odor recognition and olfactory
threshold sensitivity [14-18]. These olfactory impair-
ments are observed early in the course of AD, even be-
fore the onset of clinical dementia [14]. Non-demented
apoE4-individuals showed significant decline in olfactory
processing as compared to individuals without apoE4 al-
lele [19,20]. The AD patients with apoE4 allele showed
greater deficits in olfactory tests than siblings without
apoE4 allele [21]. Data from longitudinal studies also
have shown that apoE4 inheritance is associated with
poor scores in olfactory tests [15]. In essence, these fin-
dings show that apoE plays a key role in olfactory function.

The mechanism underlying apoE effects on olfactory
function is not clear. In previous studies, we showed that
apoE is expressed at high levels by a variety of cell types
in the olfactory epithelium and its underlying lamina
propria [22]. ApoE was localized in the basal cell layer,
suggesting that it could promote neurogenesis by facilita-
ting differentiation of basal cells to mature neurons. In
addition olfactory nerve regeneration following olfactory
nerve lesioning was significantly slower in apoE KO mice
as compared to WT mice, suggesting that apoE may play
a critical role in olfactory nerve regeneration in mice [23].

In this project we explored this possibility by examining
the effects of apoE isoforms on neuronal differentiation
and neurite outgrowth in olfactory epithelium (OE) ex-
plant cultures. We found that (1) OE cultures derived
from apoE KO mice have significantly fewer neurons with
shorter neurite outgrowth than cultures from WT mice;
(2) treatment of apoE KO cultures with either purified
apoE2 or apoE3 significantly increased neurite outgrowth,
whereas treatment with apoE4 had no effect; and (3) the
differential effects of human apoE isoforms on neurite
outgrowth were abolished by blocking the low-density
lipoprotein receptor-related protein (LRP) with lactoferrin
and receptor associated protein (RAP).

Methods
Olfactory explant epithelial culture
Homozygous apoE KO mice (C57BL/6-Apoe~"™""¢)
bred 10 generations onto C57BL/6 background and con-
trol mice (C57BL/6 J) were obtained from Jackson La-
boratory (Bar Harbor, MA). Cell culture medium,
including Neurobasal A, Hanks’ Balanced Salt Solution, B-
27 Supplement and FGF2 were obtained from Invitrogen
Corporation (Grand Island, NY). Glutamine and fibronec-
tin were purchased from Sigma Chemicals (St. Louis,
MO). Costar Brand Tissue Culture 24-well plates were
purchased from Fisher Scientific (Chicago, IL).

Prior to each experiment, glass slips were coated with
50 pg/ml fibronectin solution (Invitrogen Grand Island,
NY) for two hours at 37°C. For each experiment, seven
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to eight post-natal pups (2 days old) were decapitated
using a sterile surgical scissors and their nasal cavity was
cut open sagitally, exposing the OE. The OE was carefully
dissected and placed in ice-cold 10 ml of Hanks” Balanced
Salt Solution (Invitrogen Grand Island, NY), containing
gentamycin (100 pg/ml) and glucose (6 mg/ml). The OE
was sliced using sterile razor blade into approximately
200 pm thick explants. The explants were transferred into
Neurobasal-A (NBA) media (Invitrogen Grand Island,
NY) containing B27 supplement (20 ul/ml) and glutamine
(0.5 mM). The explants were transferred to a 24-well plate
containing the fibronectin coated slips, and the explants
were incubated for 30 minutes without any media in a
humidified incubator at 37°C and 5% CO,. Following
incubation, 500 pl of growth media (Neurobasal-A
medium with 5 ng/ml FGF, and B27) was added to each
well and the plate was further incubated. New growth
media was changed every two days. Cultures were fixed
at 8 days in vitro (DIV).

Measurement of neuronal numbers, halo size, and neurite
outgrowth

The OE cultures from WT and apoE KO mice were
grown for 8 days in growth media, fixed with 4% para-
formaldehyde, and cultures were immunostained for
tubulin III (neuronal marker) as described below. The
number of neurons, radii of the inner and outer halos,
and combined length of the short and the long neurite
outgrowth was measured using a stage micrometer
mounted on an Olympus BX50 fluorescent microscope. A
minimum of 60 neurons was measured for each treatment
condition. To avoid bias in measurements, all neurons in
the visual fields located at 5 quadrants (center, northeast,
northwest, southeast and southwest) of the culture on
cover slips was measured. In addition, the researcher was
unaware of the genotype (WT versus apoE KO) and/or the
treatment condition.

In experiments with apoE, recombinant human apoE
were purchased from Panvera (Madison, W1I), and dialyzed
overnight in 0.1 M ammonium bicarbonate. The OE cul-
tures at 2 DIV were incubated with medium alone or with
apoE isoforms (5 pg/ml). The media was replaced every
two days with re-addition of apoE. At 8 DIV, the cultures
are fixed, immunostained for tubulin III, and neurite out-
growth measured as described above.

For studies with LRP inhibitors, lactoferrin was obtained
from Sigma Chemical (St. Louis, MO), and purified recep-
tor associated protein (RAP) was generously provided by
Dr. Dudley Strickland (American Red Cross, Rockville,
MD). The OE cultures at 2 DIV were pre-incubated for
1 h with medium alone or with either RAP (5 pg/ml)
or lactoferrin (10 pg/ml). Following incubation, apoE
isoforms (5 pg/ml) were added to the medium. The
media was replaced every two days with re-addition of
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the test reagents. At 8 DIV, the cultures are fixed, im-
munostained for tubulin III, and neurite outgrowth
measured as described above.

Immunocytochemistry

Immunostaining of neuronal marker, tubulin III, was
performed as previously described [24,25]. Briefly, cover
slips of cultures at 8 DIV were rinsed with warm phos-
phate buffered saline (PBS) and fixed with 4% parafor-
maldehyde in PBS for 15 min at room temperature.
Cells were permeabilized with 0.5% Triton in PBS for
10 minutes. Cells were rinsed with PBS and blocked with
5% donkey serum and 0.05% Triton in PBS for 60 minutes.
Cells were incubated with mouse anti-tubulin III (Sigma
Chemicals, St. Louis, MO) at 1:200 dilution in blocking
solution for 2h at room temperature. Following incuba-
tion, cells were rinsed three times with PBS and incubated
with TRITC-conjugated donkey anti-mouse (Jackson
ImmunoResearch West Grove, PA) in blocking solution at
1:200 for 1h. Cells were rinsed with PBS and were
mounted with mounting medium (Vector Laboratories,
Burlingame, CA). Immunoreactive cells were counted and
photographed on an Olympus BX50 microscope with
appropriate excitation filters.

Immunocytochemistry of olfactory sensory neurons
using markers for mature (OMP) and immature (GAP43)
was performed as described above for tubulin III. At 8
DIV cells were fixed, permeabilized, and blocked with 1%
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BSA for 10 minutes. Cells were incubated overnight at 4°C
with goat anti-OMP (Wako labs, Wako TX) at 1:500 dilu-
tion in 4% donkey serum or with rabbit anti-GAP43
(Millipore, Billerica, MA) at 1:200 dilution in 4% rabbit
serum. Following incubation, cells were rinsed with PBS and
incubated for 1h at room temperature with Cy3-conjugated
donkey anti-goat at 1:500 dilution in 4% donkey serum or
with FITC-conjugated donkey anti-rabbit at 1:1000 dilution
in 4% rabbit serum. Cells were washed, mounted on glass
slides, and photographed as described above for tubulin III.
All controls with no primary were negative.

Statistical analysis

All experiments were repeated at least four times using
different preparations of OE cultures and reagents. The
data in individual experiments were presented as mean *
standard error, and statistical analysis (One way ANOVA,
Post-hoc Bonferroni Corrected t-tests) was performed
using Sigmaplot software.

Results and discussion

Characterization of olfactory epithelium cultures

We used a modified protocol to culture olfactory epithe-
lium (OE) cells derived from post-natal mice [26,27]. At
4 days in vitro (DIV) the neuronal precursors and sensory
neurons migrate out of the explant and establish as two
large halos (Figure 1). The inner halo, which is closer to the
explant, is primarily composed of densely populated,

Figure 1 Characterization of the OE culture. (A) Two contiguous phase contrast pictures of the OE culture at 8 DIV were merged to depict
the location of the explant (Ex), and the inner (In) and outer (Ot) halos. Scale bar =50 um. Representative morphologies of cells immunostained
for GBC1 (B), GAP43 (C) and OMP (D) in the OE culture. (E) Quantification of the cell types in the inner and outer halos in OF cultures.
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Figure 2 Effects of apoE deficiency on halo size and neuronal numbers in OE cultures. (A) Inner halo size was comparable in OE cultures
derived from WT and apoE KO mice. In contrast, outer halo was significantly (* p < 0.001) larger in WT mice cultures than in apoE KO cultures.
(B) Neuronal numbers were also significantly (* p < 0.001) higher in the WT cultures versus apoE KO cultures.
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irregular shaped cells. About 80% of the cells in the inner
halo were positive for GBC-1, a marker for globose basal
cells in the mature OE [28,29]. Most of the cells in the
boundary of the inner and the outer halo stained for the
growth-associated protein (GAP) 43, a marker for immature
olfactory sensory neurons in the OE [30-32]. The cells in the

outer halo were bipolar in shape and were sparsely distri-
buted. These cells expressed olfactory marker protein
(OMP), a marker for mature sensory neurons in the OE
[33,34]. In essence, the OE culture technique described
herein provides an in vitro model system to study the various
cell types that normally resides in the OE.

Figure 3 Effects of apoE deficiency on neurite outgrowth in OE cultures. Phase contrast photographs of representative neurons in OE cultures
derived from WT (A) and apoE KO mice (B). Cultures were grown for 8 days, fixed and photographed. Scale bar = 25 um. (C) Quantification of the
effects of apoE deficiency on neurite outgrowth. Neurite outgrowth was significantly (* p < 0.001) longer in WT cultures than in apoE KO cultures.
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ApoE promotes differentiation of basal cells to olfactory
sensory neurons

We first compared halo size in OE cultures from apoE
KO mice with that from age- and strain-matched WT
mice (Figure 2A). The size of the inner halo, which is
primarily composed of GBC-1" basal cells, was compar-
able in WT and apoE KO cultures. In contrast, the size
of the outer halo, which is primarily composed of cells
with bipolar outgrowths, was significantly (p < 0.001)
smaller in the apoE KO mice than that in the WT mice
cultures. To directly test if apoE deficiency leads to de-
creased neuronal numbers, we performed tubulin III im-
munocytochemistry, which is a marker for neurons
[35-37]. Fewer tubulin III positive cells were in the outer
halo of the KO mice than that in the WT mice culture
(Figure 2B). These data suggest that apoE deficiency in
the apoE KO mice leads to reduced differentiation of
basal cells to sensory neurons in the OE cultures.

Our results are consistent with previous studies that
have also shown a critical role for apoE in neuronal differ-
entiation. ApoE is known to modulate factors that are im-
portant for neurogenesis, including WNT2 and granulin
[38,39]. In addition, apoE also promotes survival of neu-
rons in normal and injured nervous system by up regulat-
ing pro-neurogenic factors like Bcl2 [40]. The precise
mechanism whereby apoE promotes basal cell differentiation
to olfactory sensory neurons is not clear, and has to be ex-
amined in future studies.
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Figure 4 Effects of human apoE on neurite outgrowth in OE
cultures. Two-days old cultures from apoE KO mice were grown in
medium alone, and in medium containing 5 pg/ml of human
apoE2, human apok3, or human apoE4. Medium was changed every
two days, and apok re-added. Cultures were fixed at 8 DIV, and
neurite outgrowth (* p < 0.05) was measured in tubulin Il
immunopositive neurons as described under Methods.
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Figure 5 Effects of blocking lipoprotein receptor, LRP, on
differential effects of human apoE on neurite outgrowth in OE
cultures. Two-days old cultures from apoE KO mice were incubated
for 1 h in medium alone or in medium containing receptor
associated protein (RAP) (5 ug/ml) or lactoferrin (LAC, 10 pg/ml).
Following incubation with RAP or LAC, human apok isoform (5 pg/
ml) was added to the medium and incubation was continued for a
total of 8 days. Medium was changed every two days, and test
reagents re-added. Cultures were fixed, and neurite outgrowth

(* p<0.05) was measured in tubulin lll immunopositive neurons as
described under Methods.

ApoE facilitates neurite outgrowth in OE cultures

To examine if apoE is important for neuronal process
outgrowth we measured neurite outgrowth at 8 DIV.
Our measurements revealed that neurons in the apoE
KO cultures had significantly (p <0.001) shorter neurite
outgrowth than those from neurons in the WT cultures
(Figure 3). These results are consistent with previous
studies that showed diminished neurite outgrowth in
embryonic and adult neuronal cultures derived from
apoE KO mice [25,41]. ApoE may have increased neurite
outgrowth directly by redistributing lipids released from
degenerating olfactory explant to newly differentiated
neurons that are in dire need for lipids to extend
neurites. Alternatively, apoE could have indirectly modu-
lated neurite outgrowth by modulating factors that are
critical for extension of neuronal processes.

Human apokE isoforms have differential effects on neurite
outgrowth in apoE KO cultures

We next examined the effects of purified human apoE
on neurite outgrowth in OE cultures derived from apoE
KO mice. Purified human apoE (5 pug/ml) was added to
a 2 DIV culture. The medium was replaced every two
days and apoE was re-added. Neurite outgrowth was
measured at 8 DIV. Cultures incubated with apoE2 had
significantly longer neurite outgrowth as compared to
cultures grown in medium alone (Figure 4). Similarly,
apoE3 treated cultures had significantly longer neurite
outgrowth than those cultures treated with apoE2 or
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medium alone. In contrast, apoE4 treatment did not
have an effect, with neurite outgrowth comparable to
those in cultures incubated with medium alone. This
finding is in striking contrast with other studies that
have shown that apoE4 decreases neurite outgrowth in
cell lines, and dissociated cell culture systems [25,42-44].
The reasons for this discrepant result are not clear, but
differences in culture paradigm, that is, explant versus
dissociated neuronal cultures, and culture medium com-
position could have contributed to this anomaly.

The LRP mediates the isoform-specific effects of apoE on
neurite outgrowth in OE cultures

Previous studies have shown that LRP, a major lipopro-
tein receptor, plays a critical role on neuronal structure
and function, including neuronal differentiation and
process outgrowth [25,45-47]. Therefore, we examined if
the effects of apoE on neurite outgrowth is mediated by
the LRP. In this experiments we blocked the LRP using
lactoferrin and RAP, and then examined if human apoE3
treatment can increase neurite outgrowth in OE cultures
[48-50]. Lactoferrin and RAP, at the concentration used
in this study, did not have an effect on neurite out-
growth (Figure 5). However, blocking of the LRP with
RAP or lactoferrin abolished the neurite outgrowth pro-
moting effect of apoE3, and the length of neurites in
apoE3 treated cultures were similar to cultures grown in
medium alone. These data suggest that the effects of
apoE3 on neurite outgrowth are mediated through the
LRP pathway of lipoprotein uptake.

How apoE isoforms differentially modulate neurite out-
growth by using the LRP is unclear. One possibility is that
apoE isoforms that are internalized through the LRP are
differentially processed in neurons. For example, we previ-
ously reported that apoE3 accumulated in both the cell
bodies and neurites, whereas, apoE4 accumulated to a
lesser extent only in the cell body [44,51,52]. The differen-
tial accumulation and localization of apoE isoforms resulted
in isoform-specific effects on neuronal microtubules that
are critical for process growth. Fewer well-formed microtu-
bules, and a greatly reduced ratio of polymerized to mono-
meric tubulin were observed in apoE4-treated neurons
than did neurons treated with apoE3 [44]. Whether or not
the effect of apoE isoforms on neurite outgrowth is due to
their differential regulation of neuronal cytoskeleton in the
OE culture has to be examined in future studies.

Conclusion

The results from this study showed that apoE plays a cri-
tical role in differentiation and neurite outgrowth in olfac-
tory sensory neurons. Moreover, human apoE-isoforms
differentially modulated neurite outgrowth. The apoE2 and
apoE3 stimulated neurite outgrowth in OE cultures by
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interacting with the lipoprotein receptor, LRP. In contrast,
apoE4, the isoform of apoE that is associated with AD,
failed to facilitate neurite outgrowth.

Previous studies have shown that apoE4 individuals have
a significant decline in odor threshold and odor identifica-
tion, and have delays in processing of olfactory information
[14-17,53]. The mechanism underlying these isoform-
specific effects of apoE on olfactory function is not clear,
but based on results from this study it is tempting to sug-
gest that the inability of apoE4 to foster neurite outgrowth
may, in part, underlie olfactory dysfunction in AD. To-
gether, these data suggest a tremendous role for apoE in
neurological health, which is modulated by apoE genotype.

Abbreviations

ApokE: Apolipoprotein E; AD: Alzheimer's disease; WT: Wild-type; LRP: Low-
density lipoprotein receptor related protein; KO: Knockout; RAP: Receptor
associated protein; LAC: Lactoferrin.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions

AH, ML, and AP carried out the research work, prepared the data for
publication, and drafted the manuscript. BPN conceived of the study,
and participated in its design and coordination and helped to draft the
manuscript. All authors have read and approved the final manuscript.

Acknowledgements

This work was supported in part by an lllinois Department of Public Health
grant, National Institute of Health R15 grant and Eastern lllinois University
grants. Purified RAP was generously provided by Dr. Dudley Strickland
(American Red Cross, Rockville, MD).

Received: 10 May 2013 Accepted: 8 July 2013
Published: 12 July 2013

References

1. Mahley RW: Apolipoprotein E: cholesterol transport protein with
expanding role in cell biology. Science 1988, 240:622-630.

2. Brown MS, Goldstein JL: A receptor-mediated pathway for cholesterol
homeostasis. Science 1986, 232:34-47.

3. Weisgraber KH: Apolipoprotein E: structure-function relationships.

Adv Protein Chem 1994, 45:249-302.

4. Zannis V], Breslow JL, Utermann G, Mahley RW, Weisgraber KH, Havel RJ, Goldstein
JL, Brown MS, Schonfeld G, Hazzard WR, Blum C: Proposed nomenclature of apoE
isoproteins, apoE genotypes, and phenotypes. J Lipid Res 1982, 23:911-914.

5. Corder EH, Lannfelt L, Bogdanovic N, Fratiglioni L, Mori H: The role of APOE
polymorphisms in late-onset dementias. Cell Mol Life Sci 1998, 54:928-934.

6. Corder EH, Saunders AM, Risch NJ, Strittmatter WJ, Schmechel DE, Gaskell PC Jr,
Rimmler JB, Locke PA, Conneally PM, Schmader KE, et al: Protective effect of
apolipoprotein E type 2 allele for late onset Alzheimer disease. Nat Genet
1994, 7:180-184.

7. Corder EH, Saunders AM, Strittmatter WJ, Schmechel DE, Gaskell PC Jr, Roses
AD, Pericak-Vance MA, Small GW, Haines JL: The apolipoprotein E E4 allele
and sex-specific risk of Alzheimer's disease. JAMA 1995, 273:373-374.

8. Corder EH, Saunders AM, Strittmatter WJ, Schmechel DE, Gaskell PC, Small
GW, Roses AD, Haines JL, Pericak-Vance MA: Gene dose of apolipoprotein
E type 4 allele and the risk of Alzheimer's disease in late onset families.
Science 1993, 261:921-923.

9. Saunders AM, Strittmatter WJ, Schmechel D, George-Hyslop PH, Pericak-
Vance MA, Joo SH, Rosi BL, Gusella JF, Crapper-MaclLachlan DR, Alberts MJ,
et al: Association of apolipoprotein E allele epsilon 4 with late-onset
familial and sporadic Alzheimer's disease. Neurology 1993, 43:1467-1472.

10.  Farrer LA, Cupples LA, Haines JL, Hyman B, Kukull WA, Mayeux R, Myers RH,
Pericak-Vance MA, Risch N, van-Duijn CM: Effects of age, sex, and ethnicity
on the association between apolipoprotein E genotype and Alzheimer



Hussain et al. Journal of Biomedical Science 2013, 20:49
http://www.jbiomedsci.com/content/20/1/49

22.

23.

24.

25.

26.

27.

28.

29.

30.

31

32.

disease. A meta-analysis. APOE and Alzheimer Disease Meta Analysis
Consortium. JAMA 1997, 278:1349-1356.

Ohm TG, Scharnagl H, Marz W, Bohl J: Apolipoprotein E isoforms and the
development of low and high Braak stages of Alzheimer's disease-
related lesions. Acta Neuropathol (Berl) 1999, 98:273-280.

Schmechel DE, Saunders AM, Strittmatter WJ, Crain BJ, Hulette CM, Joo SH,
Pericak-Vance MA, Goldgaber D, Roses AD: Increased amyloid beta-peptide
deposition in cerebral cortex as a consequence of apolipoprotein E genotype
in late-onset Alzheimer disease. Proc Natl Acad Sci USA 1993, 90:9649-9653.
Arendt T, Schindler C, Bruckner MK, Eschrich K, Bigl V, Zedlick D, Marcova L:
Plastic neuronal remodeling is impaired in patients with Alzheimer's
disease carrying apolipoprotein epsilon 4 allele. J Neurosci 1997, 17:516-529.
Bacon AW, Bondi MW, Salmon DP, Murphy C: Very early changes in
olfactory functioning due to Alzheimer's disease and the role of
apolipoprotein E in olfaction. Ann N Y Acad Sci 1998, 855:723-731.
Calhoun-Haney R, Murphy C: Apolipoprotein epsilon4 is associated with
more rapid decline in odor identification than in odor threshold or
Dementia Rating Scale scores. Brain Cogn 2005, 58:178-182.

Gilbert PE, Murphy C: The effect of the ApoE epsilon4 allele on recognition
memory for olfactory and visual stimuli in patients with pathologically
confirmed Alzheimer's disease, probable Alzheimer's disease, and healthy
elderly controls. J Clin Exp Neuropsychol 2004, 26:779-794.

Murphy C, Bacon AW, Bondi MW, Salmon DP: Apolipoprotein E status is
associated with odor identification deficits in nondemented older
persons. Ann N'Y Acad Sci 1998, 855:744-750.

Murphy C, Solomon ES, Haase L, Wang M, Morgan CD: Olfaction in aging
and Alzheimer's disease: event-related potentials to a cross-modal odor-
recognition memory task discriminate ApoE epsilon4+ and ApoE epsilon
4- individuals. Ann N Y Acad Sci 2009, 1170:647-657.

Sundermann EE, Gilbert PE, Murphy C: The effect of hormone therapy on
olfactory sensitivity is dependent on apolipoprotein E genotype.

Horm Behav 2008, 54:528-533.

Sundermann EE, Gilbert PE, Murphy C: Apolipoprotein E epsilon4 genotype
and gender: effects on memory. Am J Geriatr Psychiatry 2007, 15:869-878.
Handley OJ, Morrison CM, Miles C, Bayer AJ: ApoE gene and familial risk of
Alzheimer's disease as predictors of odour identification in older adults.
Neurobiol Aging 2006, 27:1425-1430.

Nathan BP, Nannapaneni S, Gairhe S, Nwosu |, Struble RG: The distribution of
apolipoprotein E in mouse olfactory epithelium. Brain Res 2007, 1137:78-83.
Nathan BP, Nisar R, Short J, Randall S, Grissom E, Griffin G, Switzer PV,
Struble RG: Delayed olfactory nerve regeneration in ApoE-deficient mice.
Brain Res 2005, 1041:87-94.

Nathan BP, Barsukova AG, Shen F, McAsey M, Struble RG: Estrogen
facilitates neurite extension via apolipoprotein E in cultured adult mouse
cortical neurons. Endocrinology 2004, 145:3065-3073.

Nathan BP, Jiang Y, Wong GK, Shen F, Brewer GJ, Struble RG:
Apolipoprotein E4 inhibits, and apolipoprotein E3 promotes neurite
outgrowth in cultured adult mouse cortical neurons through the low-
density lipoprotein receptor-related protein. Brain Res 2002, 928:96-105.
McCurdy RD, Feron F, McGrath JJ, Mackay-Sim A: Regulation of adult
olfactory neurogenesis by insulin-like growth factor-I. £ur J Neurosci 2005,
22:1581-1588.

Feron F, Perry C, McGrath JJ, Mackay-Sim A: New techniques for biopsy
and culture of human olfactory epithelial neurons. Arch Otolaryngol Head
Neck Surg 1998, 124:861-866.

Huard JM, Youngentob SL, Goldstein BJ, Luskin MB, Schwob JE: Adult
olfactory epithelium contains multipotent progenitors that give rise to
neurons and non-neural cells. J Comp Neurol 1998, 400:469-486.

Jang W, Youngentob SL, Schwob JE: Globose basal cells are required for
reconstitution of olfactory epithelium after methyl bromide lesion.

J Comp Neurol 2003, 460:123-140.

Ramakers GJ, Verhaagen J, Oestreicher AB, Margolis FL, van-Bergen en
Henegouwen PM, Gispen WH: Immunolocalization of B-50 (GAP-43) in the
mouse olfactory bulb: predominant presence in preterminal axons.

J Neurocytol 1992, 21:853-869.

Verhaagen J, Greer CA, Margolis FL: B-50/GAP43 Gene Expression in the
Rat Olfactory System During Postnatal Development and Aging.

Eur J Neurosci 1990, 2:397-407.

Verhaagen J, Oestreicher AB, Gispen WH, Margolis FL: The expression of
the growth associated protein B50/GAP43 in the olfactory system of
neonatal and adult rats. J Neurosci 1989, 9:683-691.

Page 7 of 7

33, Margolis FL: A brain protein unique to the olfactory bulb. Proc Natl Acad
Sci USA 1972, 69:1221-1224.

34, Keller A, Margolis FL: Immunological studies of the rat olfactory marker
protein. J Neurochem 1975, 24:1101-1106.

35, Burgoyne RD, Cambray-Deakin MA, Lewis SA, Sarkar S, Cowan NJ: Differential
distribution of beta-tubulin isotypes in cerebellum. EMBO J 1988, 7:2311-2319.

36. Gu W, Lewis SA, Cowan NJ: Generation of antisera that discriminate
among mammalian alpha-tubulins: introduction of specialized isotypes
into cultured cells results in their coassembly without disruption of
normal microtubule function. J Cell Biol 1988, 106:2011-2022.

37. Lewis SA, Cowan NJ: Complex regulation and functional versatility of
mammalian alpha- and beta-tubulin isotypes during the differentiation
of testis and muscle cells. J Cell Biol 1988, 106:2023-2033.

38. Morris DC, Zhang ZG, Wang Y, Zhang RL, Gregg S, Liu XS, Chopp M: Wnt
expression in the adult rat subventricular zone after stroke. Neurosci Lett
2007, 418:170-174.

39, Chiba S, Suzuki M, Yamanouchi K, Nishihara M: Involvement of granulin in
estrogen-induced neurogenesis in the adult rat hippocampus. J Reprod
Dev 2007, 53:297-307.

40. Sasaki T, Kitagawa K, Yagita Y, Sugiura S, Omura-Matsuoka E, Tanaka S,
Matsushita K, Okano H, Tsujimoto Y, Hori M: Bcl2 enhances survival of
newborn neurons in the normal and ischemic hippocampus. J Neurosci
Res 2006, 84:1187-1196.

41, Narita M, Bu G, Holtzman DM, Schwartz AL: The low-density lipoprotein
receptor-related protein, a multifunctional apolipoprotein E receptor,
modulates hippocampal neurite development. J Neurochem 1997,
68:587-595.

42. Nathan BP, Bellosta S, Sanan DA, Weisgraber KH, Mahley RW, Pitas RE:
Differential effects of apolipoproteins E3 and E4 on neuronal growth
in vitro. Science 1994, 264:850-852.

43, Bellosta S, Nathan BP, Orth M, Dong LM, Mahley RW, Pitas RE: Stable
expression and secretion of apolipoproteins E3 and E4 in mouse
neuroblastoma cells produces differential effects on neurite outgrowth.
J Biol Chem 1995, 270:27063-27071.

44, Nathan BP, Chang KC, Bellosta S, Brisch E, Ge N, Mahley RW, Pitas RE: The
inhibitory effect of apolipoprotein E4 on neurite outgrowth is associated
with microtubule depolymerization. J Biol Chem 1995, 270:19791-19799.

45, Herz J, Strickland DK: LRP: a multifunctional scavenger and signaling
receptor. J Clin Invest 2001, 108:779-784.

46.  Brown MD, Banker GA, Hussaini IM, Gonias SL, VandenBerg SR: Low density
lipoprotein receptor-related protein is expressed early and becomes
restricted to a somatodendritic domain during neuronal differentiation
in culture. Brain Res 1997, 747:313-317.

47. Herz J, Willnow TE: Functions of the LDL receptor gene family. Ann N Y
Acad Sci 1994, 737:14-19.

48. Kounnas MZ, Haudenschild CC, Strickland DK, Argraves WS: Immunological
localization of glycoprotein 330, low density lipoprotein receptor related
protein and 39 kDa receptor associated protein in embryonic mouse
tissues. In Vivo 1994, 8:343-351.

49, Williams SE, Ashcom JD, Argraves WS, Strickland DK: A novel mechanism
for controlling the activity of alpha 2-macroglobulin receptor/low
density lipoprotein receptor-related protein. Multiple regulatory sites for
39-kDa receptor-associated protein. J Biol Chem 1992, 267:9035-9040.

50.  Willnow TE, Goldstein JL, Orth K, Brown MS, Herz J: Low density lipoprotein
receptor-related protein and gp330 bind similar ligands, including
plasminogen activator-inhibitor complexes and lactoferrin, an inhibitor
of chylomicron remnant clearance. J Biol Chem 1992, 267:26172-26180.

51. Mahley RW, Nathan BP, Pitas RE: Apolipoprotein E. Structure, function, and
possible roles in Alzheimer's disease. Ann N Y Acad Sci 1996, 777:139-145.

52. Mahley RW, Nathan BP, Bellosta S, Pitas RE: Apolipoprotein E: impact of
cytoskeletal stability in neurons and the relationship to Alzheimer's
disease. Curr Opin Lipidol 1995, 6:86-91.

53. O'Hara R, Yesavage JA, Kraemer HC, Mauricio M, Friedman LF, Murphy GM
Jr: The APOE epsilon4 allele is associated with decline on delayed recall
performance in community-dwelling older adults. J Am Geriatr Soc 1998,
46:1493-1498.

doi:10.1186/1423-0127-20-49

Cite this article as: Hussain et al.: Isoform-specific effects of ApoE on
neurite outgrowth in Olfactory Epithelium culture. Journal of Biomedical
Science 2013 20:49.




	Abstract
	Background
	Results
	Conclusion

	Background
	Methods
	Olfactory explant epithelial culture
	Measurement of neuronal numbers, halo size, and neurite outgrowth
	Immunocytochemistry
	Statistical analysis

	Results and discussion
	Characterization of olfactory epithelium cultures
	ApoE promotes differentiation of basal cells to olfactory sensory neurons
	ApoE facilitates neurite outgrowth in OE cultures
	Human apoE isoforms have differential effects on neurite outgrowth in apoE KO cultures
	The LRP mediates the isoform-specific effects of apoE on neurite outgrowth in OE cultures

	Conclusion
	Abbreviations
	Competing interests
	Authors’ contributions
	Acknowledgements
	References

