Email updates

Keep up to date with the latest news and content from Journal of Biomedical Science and BioMed Central.

Journal App

google play app store

MST logoThe cost of publication in Journal of Biomedical Science is borne by the Ministry of Science and Technology, Taiwan.

Open Access Research

Effects of cyclic stretch on the molecular regulation of myocardin in rat aortic vascular smooth muscle cells

Chiung-Zuan Chiu12, Bao-Wei Wang12 and Kou-Gi Shyu23*

Author Affiliations

1 School of Medicine, Fu-Jen Catholic University, New Taipei, Taiwan

2 Division of Cardiology, Shin Kong Wu Ho-Su Memorial Hospital, 95 Wen-Chang Rd, Taipei, Taiwan

3 Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan

For all author emails, please log on.

Journal of Biomedical Science 2013, 20:50  doi:10.1186/1423-0127-20-50

Published: 15 July 2013

Abstract

Background

The expression of myocardin, a cardiac-restricted gene, increases during environmental stress. How mechanical stretch affects the regulation of myocardin in vascular smooth muscle cells (VSMCs) is not fully understood. We identify the mechanisms and pathways through which mechanical stretch induces myocardin expression in VSMCs.

Results

Rat VSMCs grown on a flexible membrane base were stretched to 20% of maximum elongation, at 60 cycles per min. An in vivo model of aorta-caval shunt in adult rats was also used to investigate myocardin expression. Cyclic stretch significantly increased myocardin and angiotensin II (AngII) expression after 18 and 6 h of stretch. Addition of extracellular signal-regulated kinases (ERK) pathway inhibitor (PD98059), ERK small interfering RNA (siRNA), and AngII receptor blocker (ARB; losartan) before stretch inhibited the expression of myocardin protein. Gel shift assay showed that myocardin-DNA binding activity increased after stretch. PD98059, ERK siRNA and ARB abolished the binding activity induced by stretch. Stretch increased while myocardin-mutant plasmid, PD98059, and ARB abolished the promoter activity. Protein synthesis by measuring [3H]proline incorporation into the cells increased after cyclic stretch, which represented hypertrophic change of VSMCs. An in vivo model of aorta-caval shunt also demonstrated increased myocardin protein expression in the aorta. Confocal microscopy showed increased VSMC size 24 h after cyclic stretch and VSMC hypertrophy after creation of aorta-caval shunt for 3 days.

Conclusions

Cyclic stretch enhanced myocardin expression mediated by AngII through the ERK pathway in cultured rat VSMCs. These findings suggest that myocardin plays a role in stretch-induced VSMC hypertrophy.

Keywords:
Myocardin; Stretch; Vascular smooth muscle cells; ERK pathway